Local nonlinear least squares: Using parametric information in nonparametric regression

نویسندگان

  • Pedro Gozalo
  • Oliver Linton
چکیده

We introduce a new nonparametric regression estimator that uses prior information on regression shape in the form of a parametric model. In e!ect, we nonparametrically encompass the parametric model. We obtain estimates of the regression function and its derivatives along with local parameter estimates that can be interpreted from within the parametric model. We establish the uniform consistency and derive the asymptotic distribution of the local parameter estimates and of the corresponding regression and derivative estimates. For estimating the regression function our method has superior performance compared to the usual kernel estimators at or near the parametric model. It is particularly well motivated for binary data using the probit or logit parametric model as a base. We include an application to the Horowitz (1993, Journal of Econometrics 58, 49}70) transport choice dataset. ( 2000 Elsevier Science S.A. All rights reserved. JEL classixcation: C4; C5

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Nonlinear Least Squares : Using Parametric Information

We introduce a new nonparametric regression estimator that uses prior information on regression shape in the form of a parametric model. In eeect, we nonparametrically encompass the parametric model. We obtain estimates of the regression function and its derivatives along with local parameter estimates that can be interpreted from within the parametric model. We establish the uniform consistenc...

متن کامل

Nonparametric Identification of Nonlinear Oscillating Systems

The problem of system identification from a time series of measurements is solved by using nonparametric additive models. Having only few structural information about the system, a nonparametric approach may be more appropriate than a parametric one for which detailed prior knowledge is needed. Based on nonparametric regression, the functions in the additive models are estimated by a penalized ...

متن کامل

Weighted least squares estimators in possibly misspecified nonlinear regression

The behavior of estimators for misspecified parametric models has been well studied. We consider estimators for misspecified nonlinear regression models, with error and covariates possibly dependent. These models are described by specifying a parametric model for the conditional expectation of the response given the covariates. This is a parametric family of conditional constraints, which makes...

متن کامل

Adaptive Control of Discrete - Time Nonlinear Systems Combining Nonparametric and Parametric Estimators

In this paper, a new adaptive control law combining nonparametric and parametric estimators is proposed to control stochastic d-dimensional discrete-time nonlinear models of the form Xn+1 = f(Xn) + Un + εn+1. The unknown function f is assumed to be parametric outside a given domain of Rd and fully nonparametric inside. The nonparametric part of f is estimated using a kernel-based method and the...

متن کامل

A Plug-in Bandwidth Selector for Local Polynomial Regression Estimator with Correlated Errors

Consider the Þxed regression model where the error random variables are coming from a strictly stationary, non-white noise stochastic process. In a situation like this, automated bandwidth selection methods for nonparametric regression break down. We present a plug-in method for choosing the smoothing parameter for local least squares estimators of the regression function. The method takes the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000